Skip to content

Lars Eighner's Homepage


LarsWiki

calumus meretrix et gladio innocentis

MathJaxGraveyard


Scrap Heap

Contents
 and use induction.

{$$ R = \left( 1+{1 \over n}\right) ^n = \sum_{k=0}^n {n \choose k} \left( {1 \over n} \right) ^k $$}

Every term of the binomial expansion is positive: the coefficient must be positive and since n is positive, 1/n is positive for all powers.

For {$ n=1, R_n \lt R_{n+1}, \text{ to wit:} $}

{$$ \begin{align} 2 &\lt {9 \over 4} \cr 1 + 1 &\lt 1 + 1 + {1 \over 4} \cr 1({1 \over 1})^0 + 1({1 \over 1})^1 &\lt 1({1 \over 2})^0 + 2({1 \over 2})^1 + 1({1 \over 2})^2 \cr {1 \choose 0}({1 \over 1})^0 + {1 \choose 1}({1 \over 1})^1&\lt {2 \choose 0}({1 \over 2})^0 + {2 \choose 1}({1 \over 2})^1 + {2 \choose 2}({1 \over 2})^2 \cr \sum_{k=0}^1 {1 \choose k} \left( {1 \over 1} \right) ^k &\lt \sum_{k=0}^2 {2 \choose k} \left( {1 \over 2} \right) ^k \cr \text{for } n=1 & \cr \sum_{k=0}^n {n \choose k} \left({1 \over n} \right) ^k &\lt \sum_{k=0}^{n+1} {{n+1} \choose k} \left( {1 \over {n+1}} \right) ^k \cr \left( 1+{1 \over n}\right) &\lt \left( 1+{1 \over {n+1}}\right) ^{n+1} \cr R_n &\lt R_{n+1}\end{align}$$}

Well, that was interesting, but pointless as it appears induction is not required at all. Recalling that we are doing the integer values for n > 0:

{$$\large \begin{align} (1-e^{i\theta} )^{-{1 \over 2}}+(1-e^{-i\theta} )^{-{1 \over 2}}&=(1+\csc(\theta/2) ^{1 \over 2} \cr {1 \over {\sqrt{1-e^{i\theta}}}}+ {1 \over {\sqrt{1-e^{-i\theta}}}} &= \cr { { \sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}} } \over {\sqrt{1-e^{i\theta}}\sqrt{1-e^{-i\theta}}}} &= \cr { { \sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}} } \over { \sqrt{ (1-e^{i\theta})(1-e^{-i\theta} ) } }} &= \cr { { \sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}} } \over { \sqrt{ (1-\cos\theta-i\sin\theta)(1-\cos\theta + i\sin\theta ) } }} &= \cr { { \sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}} } \over { \sqrt{ (2-2\cos\theta ) } }} &= \cr \left[ { { \sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}} } \over { \sqrt{ (2-2\cos\theta ) } }} \right] ^2 &= 1+\csc{\theta \over 2} \cr { { (\sqrt{1-e^{-i\theta}} +\sqrt{1-e^{i\theta}})^2 } \over { 2-2\cos\theta }} &= \cr { { 1-e^{-i\theta} +2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} + 1-e^{i\theta} } \over { 2-2\cos\theta }} &= \cr { { 2-2\cos\theta +2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} } \over { 2-2\cos\theta }} &= \cr {{2-2\cos\theta } \over { 2-2\cos\theta }}+{ { 2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} } \over { 2-2\cos\theta }} &= \cr 1 +{ { 2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} } \over { 2-2\cos\theta }} &= 1+\csc{\theta \over 2}\cr { { 2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} } \over { 2-2\cos\theta }} &= \csc{\theta \over 2}\end{align}$$}

{$$\large \begin{align} { { 2\sqrt{1-e^{-i\theta}}\sqrt{1-e^{i\theta}} } \over { 2-2\cos\theta }} &= \csc{\theta \over 2} \cr { { \sqrt{ (1-e^{-i\theta})(1-e^{i\theta}) } } \over { 1-\cos\theta }} &=\end{align}$$}


Sources:

Recommended:

Category:


Read or Post Comments

No comments yet.

This is a student's notebook. I am not responsible if you copy it for homework, and it turns out to be wrong.

Figures are often enhanced by hand editing; the same results may not be achieved with source sites and source apps.

Backlinks

This page is MathCalculusMathJaxGraveyard

August 05, 2017

  • HomePage
  • WikiSandbox

Lars

Contact by Snail!

Lars Eighner
APT 1191
8800 N IH 35
AUSTIN TX 78753
USA

Help

HOME

The best way to look for anything in LarsWiki is to use the search bar.

Page List

Categories

Physics Pages

Math Pages

Math Exercises

Math Tools

Sections