# Lars Eighner's Homepage

## LarsWiki

### (cos θ - 1) / θ = 1

{$$\frac {\cos \theta - 1} {\theta} \tag{Fig. 1}$$}

#### Prove

{$$\lim_{\theta\rightarrow0} {\frac{\cos\theta - 1}{\theta}} = 0$$}

General Approach

This proof use trigonometry identities, a previous result

{$$\lim_{\theta\rightarrow0} {\frac{\sin\theta}{\theta}} = 1$$}

which is demonstrated here, which will be used to rid the denominator of θ and the product of limits.

{$$\begin{gather} \lim_{\theta\rightarrow0} {\frac{\cos\theta - 1}{\theta}} &= \cr \lim_{\theta\rightarrow0} {\frac{(\cos\theta - 1)(\cos\theta + 1)}{\theta(\cos\theta + 1)}} &= \cr \lim_{\theta\rightarrow0} {\frac{\cos^2\theta - 1}{\theta(\cos\theta + 1)}} & \end{gather}$$}

Argument: From the trig identity sin²θ + cos²θ = 1, we see cos²θ - 1 = -sin²θ.

{$$\begin{gather}\lim_{\theta\rightarrow0} {\frac{\cos^2\theta - 1}{\theta(\cos\theta + 1)}} &= \cr \lim_{\theta\rightarrow0} {\frac{-\sin^2\theta}{\theta(\cos\theta + 1)}} &= \cr \lim_{\theta\rightarrow0} \left( \large{-1} \right) \left( {\frac{\sin\theta}{\theta}} \right) \left( \sin\theta \right) \left( {\frac{1}{\cos\theta + 1}} \right) &= \cr \left(\lim_{\theta\rightarrow0} \large{-1} \right) \left(\lim_{\theta\rightarrow0} {\frac{\sin\theta}{\theta}} \right) \left( \lim_{\theta\rightarrow0} {\sin\theta} \right) \left( \lim_{\theta\rightarrow0} {\frac{1}{\cos\theta + 1}} \right) \end{gather}$$}

Argument: The limit of products is the product of limits.

{$$\begin{gather} \left( \lim_{\theta\rightarrow0} \large{-1} \right) \left( \lim_{\theta\rightarrow0} {\frac{\sin\theta}{\theta}} \right) \left( \lim_{\theta\rightarrow0} {\sin\theta} \right) \left( \lim_{\theta\rightarrow0} {\frac{1}{\cos\theta + 1}} \right) = \cr \left( \large{-1} \right) \left( \large{1} \right) \left( \large{0} \right) \left( \lim_{\theta\rightarrow0} {\frac{1}{\cos\theta + 1}} \right) = \large{0} \cr \therefore \boxed{\lim_{\theta\rightarrow0} {\frac{\cos\theta - 1}{\theta}} = 0} \end{gather}$$}

Argument: The limit of the constant -1 is the constant. {$$\lim_{\theta\rightarrow0} {\frac{\sin\theta}{\theta}} = 1$$} is a previous result, demonstrated here, since there is no denominator {$$\lim_{\theta\rightarrow0} \sin\theta$$} can be found by substitution to be 0,

{$$\lim_{\theta\rightarrow0} {\frac{1}{\cos\theta + 1}}$$} is defined because cosθ is near 1 (not near -1), so the denominator is not 0. In fact this limit is ½ but its value does not matter. Since one factor is 0, the whole product is 0.

Graph:

1. FooPlot: Online graphing calculator and function plotter

Sources:

Wikisource

Recommended:

Category: Math

This is a student's notebook. I am not responsible if you copy it for homework, and it turns out to be wrong.

Figures are often enhanced by hand editing; the same results may not be achieved with source sites and source apps.

### August 06, 2017

• HomePage
• WikiSandbox

Lars

Contact by Snail!

Lars Eighner
APT 1191
8800 N IH 35
AUSTIN TX 78753
USA

Help