Skip to content

Lars Eighner's Homepage


LarsWiki

calumus meretrix et gladio innocentis

Comments for The Derivative of Arc Cotangent

The Derivative of Arc Cotangent


Cotangent
Contents

A previous result is: {$$ {d \over {d\theta}} \cot\theta = - \csc^2\theta $$}

Attention is called to the diagram which illustrates the Pythagorean identity:

{$$ csc^2\theta = 1 + cot^2\theta $$}


{$ y = \cot(x) $} and {$ y=\operatorname{arccot}(x) $}

The demonstration proceeds by implicit differentiation:

{$$ \begin{align} \cot(\operatorname{arccot}\theta) &= \theta \tag{definition of inverse} \cr \text{Let } y &= \operatorname{arccot}\theta \cr \cot(y) &= \theta \cr {d \over {d\theta}} \left( \cot(y) \right) &= {d \over {d\theta}} \theta \cr {d \over {d\theta}}cot(y){d \over {d\theta}}y &= 1 \tag{Chain rule} \cr -\csc^2{d \over {d\theta}}y &= 1 \tag{previous result} \cr {d \over {d\theta}}y &= - {1 \over {csc^2(y)}} \cr {d \over {d\theta}}y & = - {1 \over {1 + cot^2(y)}} \tag{Pythagorean identity} \cr {d \over {d\theta}}\operatorname{arccot}\theta &= - {1 \over {1 + cot^2(\operatorname{arccot}\theta)}} \tag{value y} \cr \therefore \quad {d \over {d\theta}}\operatorname{arccot}\theta &= - {1 \over {1 + \theta^2}}\end{align} $$}


{$ y = \cot(x) $}, {$ y=\operatorname{arccot}(x)$}, {$ y = \cot(x) $} and {$ y=\operatorname{arccot}(x) $}.

Sources:

  1. FooPlot: Online graphing calculator and function plotter
  2. FooPlot: Online graphing calculator and function plotter

Recommended:

Category: Math Calculus Trigonometry

0 comments

Add Comment

Heading:
 Your Message
 
 
 Enter value <- Have you entered the code number?
Author:
Comments

No comments yet.

Return to The Derivative of Arc Cotangent

December 24, 2018

  • HomePage
  • WikiSandbox

Lars

Contact by Snail!

Lars Eighner
APT 1191
8800 N IH 35
AUSTIN TX 78753
USA

Help